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ABSTRACT 

This  paper describes a test suite to chsck the accu- 
racy  of  frequency stability analysis software. It con- 
tains  the values of several common statistics  and fre- 
quency stability measures  for  two data sets, a small 
one suitable for manual  entry, and a larger one p r e  
duced by a portable pseudo-random  number  genera- 
tor. The paper also discusses related issues  such as 
data gaps  and outliers, phase-frequency  conversions, 
drift removal,  numerical precision, plotting, and simu- 
lation. 

INTRODUCTION 

Specialized calculations are necessxry to express the 
results of time domain freqllency stability measure- 
ments [1,2,3].  A  common  exampl.: ip the Allan  vari- 
ance  for a set of fractional frequency  dat?..  Such  cal- 
culations are generally  performed  by a computer, for 
which a custom program may need to be written  and 
debugged. Each generation of computer hardware and 
operating  system usually requires an update of the 
software, which must then  be validated  before  use. A 
suite of test  data, for  which correct values  of  com- 
mon  frequency stability measures are known, can be 
a  valuable tool for  checking the accuracy of frequency 
stability analysis software. 

DATA TYPES  AND  TERMINOLOGY 

The time domain stability of a frequency  source  can be 
measured by either phase or frequency data.  The for- 
mer is normally  expressed as z ( t )  = q5(t)/2nvo, where 
v0 is the nominal frequency. This quantity  has  units 
of time, but is generally  called  “phase” to avoid  con- 
fusion with  the independent time variable, t .  Fre- 
quency is normally  expressed as fractional frequency, 
y ( t )  = [v(t)  - vo]/vo = z’ ( t ) ,  which is dimensionless. 
When making stability measurements, it is preferable 
to take phase data, since it is the more  fundaKenia1 
quantity. The  terms “frequency standard” and ‘clock” 
are often used  interchangeably. A frequency  source 
may be called a clock e s a  though  it does  not  contain 
any actual clock hardware, especially if it is used  for 
timing  purpo;es. The  term “oscillator”  is  best  used  for 
an active source  like  a crystal oscillator rather  than a 
passive  device such as a cesium beam tube or rubidium 
gas cell  frequency  reference. 

DATA PREPROCESSING 

Preprocessing of the measurement data is often  nec- 
essary  before  performing the  actual analysis, which 
may require data averaging, or removal of outliers, fre- 
quency  offset,  and drift [4]. 

Phase data can be modified for a longer  averaging  time 
by simply  removing the intermediate  points.  This is 
accomplished  for  frequency data by calculating the av- 
erage of each  group of points. 

F’requcmcy  offset  may be removed from phase data by 
subtracting a line determined by the average of the 
first  differences,  or  by a least-squares linear fit. An 
offset may be  removed from frequency data by  nor- 
malklng it to have  an  averagc:  value  of  zero. 

Frequency drift may be removed from phase data by 
a least-squares or 3-point quadratic fit [5],  or  by sub- 
tracting the average  of the second  differences.  Fre- 
quency drift may be removed  from  frequency data by 
subtracting a least-squares linear fit, by subtracting a 
line determined by the mean of the first-differences of 
the frequency data, or by calculating the drift from 
the difference  between the average of the two  halves  of 
the  data.  The  latter, called  here the bisection drift, is 
equivalent to  the 3-point fit to  the phase data. 

Other, more specialized, methods of drift removal  may 
also be used.  For example, the frequency data may 
be fit to a particular model  such as the log  function 
of MIL-0-55310B [6]. The  latter is particularly use- 
ful to describe the stabilization of a frequency  source. 
In general, the objective is to remove as much of the 
deterministic behavior as possible, obtaining random 
residuals  for subsequent noise analysis. 

Phase data may  be  converted to frequency data by  cal- 
culating the first differences  of the phase data and di- 
viding  by the measurement interval or averaging time. 
F’requmcy data may be converted to phase data by 
piecewise integration, using the averaging time as the 
integration interval. 

FREQUENCY  STABILITY  MEASURES 

The most  common  time-domain  measures of frequency 
stabilily are as follows: 

360 

0-7803-2500-1/95 $4.00 0 1995 IEEE 



1 .  The normal . i l lan variance, U:( r )  [7]. 
2 .  The normal .Illan variance  calculated from fu l ly  

overlapping  samples, uy2(r) [S]. 
3 .  The modified  Allan variance, Mod ui( r )  [!l]. 
4. The time variance, g:(.) [ 10. l l]. 

where the variances are  functions of the averaging 
time. T .  They are often denoted as AVAR, MVAR 
and TVAR,  respectively. These quantities  are not  af- 
fected (except possibly  for  reasons of numerical  preci- 
sion) by the nominal  frequency  offset. They are usu- 
ally calculated after removal of frequency drift, and 
are expressed as their square  roots, ADEV, MDEV 
and  TDEV. Each  can be calculated from either phase 
or frequency data, which  give the same result. 

These calculations are reasonably fast on a  modern 
computer with  a math coprocessor, except, perhaps, 
for the modified  Allan  variance (and the related time 
variance). For a data  set of several thousand points, 
calculation of the normal Allan  variance is practically 
instantaneous, and the overlapping  Allan  variance  cal- 
culation  takes only a few seconds.  Calculation of the 
modified  Allan  variance from phase data also  takes 
only seconds,  while its calculation from  frequency data 
requires a triply-nested loop that can  take  several  min- 
utes. Algorithms faster than  the obvious  ones are 
available  [12,13], particularly if the  data have  no gaps. 
A complete stability run is commonly  done over a 
range of averaging  times  by doubling  the T at each 
successive analysis point  for  which there is  sufficient 
data. 

TEST DATA 

A  “classic” suite of frequency stability  test data is the 
set of nine >digit numbers from Annex  8.E of NBS 
Monograph 140  [l41  shown  in Table I. Those numbers 
were used as an early example of an Allan  variance 
calculation. This frequency data is also normalized to 
zero mean by subtracting  the average  value, and then 
integrated to obtain phase  values.  A  listing of the 
properties of this data set is shown in  Table 11. While 
nine data points  are insufficient to calculate large  fre- 
quency  averages. they are, nevertheless, a very  use- 
ful starting point to verify  frequency stability calcu- 
lations, since a small data set can easily  be  entered 
and analyzed  manually. A small data set is also an 
advantage for detecting “off-by-one’’ errors. 

The larger frequency data test  suite used  here  consists 
of 1000 pseuderandom frequency data points. It is 
produced by the following prime modulus linear  con- 
gruential random number generator [15]: 

ni+l = (16807. n i )  ibfod 2147483647 

This expression  produces a series of pseuderandom 
integers ranging  in  value from 1 to 2147483646 (the 
prime modulus. 231 - 1, avoids a collapse to zero). 

When started rvl th  r.he ,#:er1 n , )  = I 2 ~ ~ 4 . j ~ ~ ~ 8 ! 1 0 ,  it  pro- 
~luzes the  sequeliv n :  = 3!)3.52SU lei. 11.2 = L20S-LlU747. 
ng = 633705974, ’tc. These  nunlber::  may be divideti 
by 21474836.17 t,o ‘htain a set of normalized  Boating- 
point test dat,a  ranging from 0 to L .  Thus the nor- 
malized  value of no is 135748904732. 4 spreadsheet 
program is a  convenient  and  reasonably  universal way 
to  generate this data.  The frequency data set may 
be  converted to phase data by assuming an  averaging 
time of 1, yielding a set of 1001 phase data points. 
Similarly,  frequency  offset and/or drift terms may  be 
added to the  data. These  conversions can also be  done 
by a spreadsheet program. 

The values  of  this data set will  be  uniformly  dis- 
tributed between 0 and 1. While a data set with a 
normal (Gaussian)  distribution would be more  realis- 
tic,  and could  be  produced  by summing a  number of 
independent uniformly distributed data  sets, or by th, 
Box-Muller  method  [16], this simple data set IS ade- 
quate for  software validation. 

RESULTS 

Statistics for the 1000-point test  suite  are shown  in 
Table 111. These values, reported to 7 significant fig- 
ures,  were  obtained  using IEEE 754 64bit double- 
precision (Isdigit) floating  point arithmetic. While 
this reported precision is unwarranted for actual  sta- 
bility measures,  it is useful  for  software validation. The 
theoretical expected  value  for the mean of a random 
variable  uniformly distributed over the interval (0,l) 
is 0.5, and is independent of the averaging factor.  The 
linear  slope (per data interval) and  the intercept  are 
calculated as a least-squares linear regression fit.  The 
standard deviation  is that for the sample (not  the pop- 
ulation). The theoretical expected value  for the  stan- 
dard deviation  is 1 / a  = 0.2886751. The normal Al- 
lan deviation, uv(r ) ,  is calculated  for the full data set 
without averaging (T  = Q), using adjacent differences. 
For white frequency  noise, it is equal to the  standard 
deviation. The modified  Allan deviation, Mod uY(.), 
is, by definition, equal to  the normal Allan  deviation 
for an averaging time equal to  that of the basic data 
interval, TO. The overlapping  Allan deviation, calcu- 
lated using  fully  overlapping samples (every  available 
difference at  a certain averaging time) is also equal to 
the normal Allan  deviation  for T = TO. The time  de- 
viation, uz(r), is  simply the modified  Allan  deviation 
multiplied  by T / & .  

GAPS, JUMPS, and OUTLIERS 

It is not uncommon to have gaps and outliers in a set 
of  raw frequency stability data. Missing or erroneous 
data may  occur  due to power outages, equipment mal- 
functions, and interference. For long-term tests. i t  may 
be  impossible or impractical to repeat  the  run, or to 
otherwise  avoid  such  bad data points. Usually the rea- 
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son for the  gap or outlier is known. It is particularly 
important to explain all phase discontinuities. Plot- 
ting  the data will often  show the bad points, which 
may  have to be removed  before further analysis to ob- 
tain meaningful results. 

A simple, yet  effective,  technique for finding outliers 
is to compare  each  frequency data point, y,, with the 
median  value, m, of the data set plus or minus  some 
multiple of the median absolute deviation  (MAD): 

M A D  = Median { lyi - m1 / 0.6745) 

where m = Median {yi}, and  the factor 0.6745 makes 
the MAD equal to  the  standard deviation for  normally 
distributed data [17]. These median statistics  are more 
robust because they  are insensitive to  the size  of the 
outliers.  Outlier  detection is normally  applied  only to 
frequency data. 

More elaborate techniques exist for the recognition of 
outliers in marginal cases [17,18]. A particularly effec- 
tive means is statistical comparison of each data point 
against  an  optimum predictor  based  on an  appropriate 
noise  model. 

Often a bad data point is replaced  with a gap. The 
gaps should be kept  in the record  because they serve 
as “place-keepers”  in time,  and because “truth-in- 
packaging”  may require them to be identified. A value 
of zero is often used as an obvious and unique way to 
indicate a gap, especially  in fractional frequency data, 
where  zero  almost  never appears. It is also an  easy 
value to test for. However, a value of zero  does  occur 
at the beginning and end of a set of  normalized  phase 
data, so, while a zero is suitable to indicate an  embed- 
ded gap in phase data,  it is not unique as the first  or 
last  point. 

Stability analysis algorithms can be modified to handle 
gaps. Two sample variances can  be formed  for the 
available pairs,  taking into account the actual number 
of analysis points. Averages can be formed  where there 
is at least one point  within the  group. Otherwise a gap 
is inserted  into the averaged data. Phase-frequency 
conversions  can also be written to handle gaps. 

Optionally, a gap may be replaced by an interpolated 
value. While this may be desirable in  some  cases, it 
masks the existence of the missing data, and creates 
a fictitious value.  Filling  in gaps has  the advantage, 
however, that  the plotting and stability analysis  meth- 
ods  do  not need  provisions  for handling gaps. 

Frequency jumps can also be a problem for stability 
analysis. Intuitively, a frequency jump is an  indica- 
tion that  the  statistics of the device  being  measured 
are  not  stationary.  It may be necessary to divide the 
record into two portions before and after the  jump 
and  analyze them separately. A jump may  be  defined 

and recognized  by  moving a sliding window  through 
the frequency data, looking  for a change in  the aver- 
age  value  between the two  halves  of the window. The 
magnitude of the  jump can be judged in relation to 
the  scatter of the  data. 

DATA ARRAYS 

A  one-column  vector is all that is required for a phase 
or frequency data array.  Because the  data points  are 
equally spaced, no time  tags are necessary.  While  time 
tagging  may be needed  for archival storage of  clock 
measurements, a vector of extracted gap-filled data is 
sufficient for analysis. 

NUMERICAL  PRECISION 

There  are relatively few numerical  precision  issues re- 
lating to the analysis of frequency stability  data. One 
obvious case, however, is phase data for a highly stable 
frequency  source  having a relatively large frequency 
offset. The raw  phase data will be essentially a straight 
line  (representing the frequency offset), and  the insta- 
bility  information is contained in the  small deviations 
from the tine. A large number of digits is necessary 
unless the frequency  offset is removed  by subtracting 
a linear term from the raw  phase data. Similar  consid- 
erations may also apply to the  quadratic phase term 
(linear frequency drift). 

Many  frequency stability measures involve  averages  of 
first or second  differences. Thus, while their numeri- 
cal precision  depends upon the variable digits of the 
data  set, there is little error propagation in  forming 
the summary  statistics. 

DATA PLOTTING 

Data plotting is often the most important  step in the 
analysis of frequency stability. Visual inspection  can 
provide vital insight into the results,  and is an impor- 
tant “preprocessor”  before  numerical analysis. A plot 
also shows  much about  the validity of a curve fit. 

Phase data is generally plotted  with line segments con- 
necting  the data points. This  presentation properly 
conveys the integral nature of the  phase  data. Fre- 
quency data is often plotted the  same way,  simply  be- 
cause that is the way plotting is usually done.  But a 
better presentation is a flat, horizontal line  between 
the frequency data points.  This shows the averaging 
time associated  with the frequency measurement, and 
mimics the analog  record  from a frequency counter. As 
the density of the  data points increases, there is  essen- 
tially no  difference  between the two plotting methods. 
In a plot, missing data should be shown as a gap  with- 
out a line  connecting the adjacent  points. 

Stability plots generally take the  form of graphs of 
log U versus  log T, often with error bars  to show the 
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precision of the results. The slope of the U,,(.) charac- 
teristic depends on the  type of noise.  It is customary 
to show points at octave increments of T .  These are 
equally  spaced on the log scale,  and  are  the result of 
successive  averaging by a factor of two.  Such a run 
usually ends when there  are  too few analysis points 
(say<7) for reasonable  confidence. A run  for all possi- 
ble T values, while slow, can  provide  valuable  informa- 
tion since it is, in  effect, a form of spectral analysis that 
can show  power-law spectra  and periodic  instabilities 
such as environmental effects. 

ERROR  BARS 

Several  approaches exist for the  setting of error bars on 
a stability plot to indicate the precision of the results. 
A  rough approximation to a standard l-sigma confi- 
dence interval can  be obtained by simply dividing the 
point  value by the square  root of the number of analy- 
sis points.  This approximation degenerates for a small 
number of degrees of freedom.  More exact single- and 
double-sided  confidence intervals can  be  determined 
by the noise and variance type [2,8,19,20], as shown  in 
Table IV. 

NOISE  RECOGNITION  AND  MODELING 

It is often desirable to have a means for  identifying the 
type of noise that is  being analyzed,  and  to be  able to 
fit it to a power-law  noise model. Noise  recognition 
can  generally  be  accomplished  by  using the B1 bias 
function (the  ratio of the  standard variance to the Al- 
lan variance) and the  R(n)  ratio  function  (the  ratio 
of the modified  Allan  variance to  the normal Allan 
variance). These functions can be calculated by the 
methods described  in  Reference 1. Power-law  noise 
can be  modeled  over a range of averaging  times by fit- 
ting a line to the results of an Allan  variance stability 
analysis on a log U versus  log r plot. 

SIMULATED  CLOCK  NOISE 

It is  valuable to have a means of generating simulated 
power-law  clock  noise having the desired  noise type 
(white  phase, flicker phase,  white frequency,  flicker  fre- 
quency, and random walk frequency), Allan deviation, 
frequency  offset and frequency drift.  This can  serve as 
an  additional means to validate  stability analysis soft- 
ware, particularly for  checking  numerical  precision  and 
noise  recognition and modeling.  An  excellent  method 
for  power-law  noise generation is described  in  Refer- 
ence  21. This reference also provides  very  useful  znal- 
ysis insights. 

VALIDATION  METHODS 

Several methods are available to validate frequency 
stability analysis software: 

1. Manual Analysis: The results obt,ained by manual 
analysis of small data  sets (such as in NBS Mono- 
graph 140  Annex 8.E) can  be compared with the 
new program output.  This is always  good to do 
to get a “feel”  for the process. 

2. Published  Results: The results of a  published 
analysis can  be compared  with the new program 
output.  The purpose of this  paper is to serve as 
such a reference. 

3. Other Programs: The results obtained from  other 
specialized stability analysis programs (such as 
that from a previous  generation computer or op- 
erating  system) can be compared with the new 
program output. 

4. General  Purpose Programs: The results obtained 
from industry  standard, general purpose mathe- 
matical and  spreadsheet programs (such as Math- 
CAD and Lotus  1-2-3)  can  be compared with the 
new program output. 

5. Consistency  Checks: The new program should 
be  verified  for internal consistency, such as prc- 
ducing the same stability result,s from  phase  and 
frequency data.  The  standard  and normal Allan 
variances  should be approximately equal for  white 
FM  noise. The normal and modified  Allan vari- 
ances  should  be identical for an averaging  factor 
of 1. For other averaging factors, the modified 
Allan  variance  should  be approximately one-half 
the normal Allan  variance  for  white  FM  noise  and 
7 >> TO. The normal and overlapping  Allan  vari- 
ances  should  be approximately equal. The over- 
lapping method provides better confidence of the 
stability  estimates. The various methods of drift 
removal  should  yield similar results. 

6. Simulated Data: Simulated  clock data can  also 
serve as a useful  cross  check.  Known  values of fre- 
quency  offset and  drift can be inserted, analyzed, 
and removed.  Known  values  of  power-law  noise 
can be generated,  analyzed,  plotted, and modeled. 

CONCLUSIONS 

There is a continuing  need to validate the custom soft- 
ware  used to analyze time domain frequency stability. 
The suite of test data presented here, along  with the 
other suggestions made, can help  ensure that correct 
results are  obtained. 
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Table I. NBS Monograph 140, Annex 8.E Test Data 
. 

Data  Point # I Requency Data I Normalized  Frequency I Phase  Data ( r = l )  

’ 
Table 11. NBS  Monograph  140,  Annex 8.E Test  Data  Statistics 
Averaging  Factor 1 1  1 2  

Table I1 Notes: 

[l] Sample (not population)  standard  deviation. 

Table 111. 1000-Point Requency Data  Set 
Averaging Factor 1 1  I 100 
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Table 111 Notes: 

[l] Expected  value = 0.5. 

[2] All slopes are per  interval 

[3] Least-squares  linear fit. 

[4] Exact results will depend on iterative algorithm  used. Data not suited to log  fit 

[5] Sample (not population) standard deviation.  Expected  value = 1/m = 0.2886751. 

161 Expected value equal to  standard deviation  for  white  FM  noise. 

[7] Equal to normal Allan deviation for  averaging  factor = 1. 

[8] Calculated with  listed  averaging factors from the basic r = 1 data  set. 

0 Table  IV. Error Bars for  n=1000  Point =l Data Set  with  Averaging Factor=lO U 
fl Allan  Deviation 

_. 
Noise Confidence Interval 

T w  Remarks XZ Value Type Ratio Value # 
Normal 

119.07 Max uy(r)= 1.014923e-01 W FM - 9.159953e-02 981 Overlapping 
&la CI. [6] - CI= 8.713870e-03  [2,3] W FM [l] Bl=0.870 9.965736e-02  99 
95% CI. [7] 

# X2df = Max ay(r)= 1.035201e-01 
181.34  Min uy(r)= 8.223942e-02  146.177 

95% CI. [8] 114.45 

Modified  [4] 972  6.172376e-02 R(n)=0.384 W FM [5] 
# X'df = 

95% CL [7] 72.64 Max  ay(r)=7.044412e-02 
95% CI. [8] 69.06  Max  ay(r)=7.224944e-02 

I 94.620 122.71  Min U,,(.) = 5.419961e-02 

Table  IV  Notes: 

[l] Theoretical B1=1.000  for  W FM noise and 0.667  for  F and W PM noise. 

[2] Simple,  noise-independent C1 estimate = u Y ( r ) / f l  = 1.0015946-02. 

[3] This C1  includes K ,  factor that depends on noise  type: 

I Noise I Q I IC, 1 

RW FM  -2  0.75 

[4]  BW factor = 27fhq = 10. Applies  only to F PM  noise. 

[5] Theoretical R(n) for  W  FM  noise = 0.500 and 0.262  for  F  PM  noise. 

[S] Double-sided  68.3%  confidence  interval: p = 0.158 and 0.842. 

[7] Single-sided  95%  confidence  interval: p = 0.950. 

[S] Double-sided  95%  confidence  interval: p = 0.025 and 0.975. 
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