Rubidium Frequency Generator HG 414A

Preliminary data

The rubidium frequency generator HG 414A provides for separate outputs RF signals of 0.1, 1, 5 and 10 MHz with an accuracy of about 2 * 10 ^ -11 for control or calibration of Frequenzesynthesizern, frequency counters, etc.

Second pulses of approximately 17.4 microseconds duration and a rise time of about 30 nanoseconds are available.

The built-in digital display can be used as a fast and accurate frequency counter (resolution $1 * 10 ^ -11$) used. The fast gate time of one second due to a limitation of the measuring range of 5 MHz + / - is 500 Hz at a measurement time of 10 seconds det area still + / - 50 Hz and the display $1 * 10 ^ -12$, offers the measurement time of 100 seconds det range of + / - 5 Hz limited. Different frequencies may need to be accommodated by dividing or multiplying at 5 MHz.

The time interval of external to internal second pulses can be close shows in microseconds.

The digital display can be used as a Clock.

The accuracy of 2 * 10 ^ -11 at 10 GHz corresponds to a deviation of 0.2 Hz!

Principle

In the Rb-normal optical selection of rubidium gas is utilized. An excited by a VHF generator Rb (87)-spectral filtered through a Rb (85) gas cell, sends light into a Rb (87) resonance cell, which is located in the cavity, as shown in Fig. This light caused by a so-called pumping that Rb atoms are raised einern of Low-energy state E1 to a drift, much higher level E3. From there they turn back, preferably on an average level of E2, so that there is an accumulation of E2. E2 and E1 differ by a frequency of 6.834 GHz 685 ... the amount of energy.

After Anreicberung levels of E2 may be a redistribution of the kind made by the action of the external field that the Nieveaus E1 and E2 are re-occupied the same frequency. This occurs when the frequency of the field agrees with the Rb resonance frequency as accurately as possible.

This leads to a re-onset of absorption of the pump light (wavelength 780 nm). The resulting change in the transparency of the resonance cell is used to detect the resonant frequency of a photodiode. The detector signal is used to Nachsteuerung of the excitation frequency supplied auxiliary oscillator which simultaneously provides the output signal.

Rubidium Frequency Generator HG 414A

New production from the Russian space research, for Deutchland modified.

User manual

Power supply:

Netzchalter # 1 with Jack # 2 = 230 volts AC

Power supply by DC is also possible:

Socket #3, Pin 1 Ground, Pin 4 +24 to 27 volts DC, max. 2.5 Amp

The possibly Gleischspannungversorgung is not turned off the power switch turns on. It can remain connected and does offer the Netzaufall Strömversorgung.

Screen # 4 displays the function:

Red LED and / or 0/1/3 = thermostat or control loop is not ready.

Green LED = function given.

Break-in period at 20 C room temperature for about 30 minutes 1x10 ^ -10.

Result after about 120 min at $2x10^{\circ}$ -11.

Betreibsarten

Key # 5 = function selection loop:

Pos A = display off, item B = time difference, Post C = Frequenzeabweichung, item D = Clock. 3xLED Control # 6, display the data in the display # 11

Item A: Off

Seven segment display of all outputs but in operation.

Item B: $-\Delta t$

Time difference measurement:

Second pulses at the back entrance Eingangsschaiter # 21 # 22 "EXT". Difference is displayed in microseconds. Leitzte point 0.1 ms.

With "START" will spend 17.4 microseconds long second pulses with 5V and female # 19. Ansteigzeit 30 ns.

Jack # 20 time-shifted second pulses with 5 V supply. The input switch # 22 to "INT", the difference in 0.1 microseconds is read. When switching from switch # 14 10 Hz output (0.1 microseconds).

The setting of the shifted second pulse to the internal or ext second pulses kan be changed via the keys # 7 and 8. With "START" # 10, 3 packages are selected coarse medium-fine with overflow. The adjustment is faster when it is activated only to 10 Hz. Reciprocal input - If the time setting + / works. With external measurement of the initial value is to write down and calculate the difference in later Abel Sung. Display last digit = 0.1 microseconds. The harmonic meetings Synchronisatio is pressing key # 9 and # 10.

Item C: - DELTA.F f/-

Device works as a frequency counter with 5 MHz center frequency.

Input jack on the back # 18, Level 0.2 to 5 Vpp, 50 Ohm BNC connector.

1 sec gate time (switch # 12) Advertisement (7th) 1x10 ^ -11, capture range + / - 500 Hz

Gate 10 S (relative measure) display (7th) 1x10 ^ -12, Fangbereisch + / - 50 Hz

Gate 100 S, ad (6th place) $1x10^{-12}$, capture range +/-5 Hz

Other frequencies have to be tting and / or multiplication brought to 5 Mhz. With enough levels and operate within the area covered flashing LED # 6 (middle).

Item D: - t -

Clock set: switch # 13 aug "TIME SET", including seconds (+ / - # 7 and 8) with "START" # 10 and minutes shall continue, then hours. Here for example 1 minutes and turn with pretend switch # 13 to "count": Clock starts.

* * *

Crystal oscillator center settings have been made in the factory (# 16) and is engaged with det AFC switched # 15.

All inputs and outputs (in Russian) BNC connectors. The second pulses to socket # 20, and the frequency output to the terminals # 17 (10, 5, 1 and 0.1 Mhz) are stän conditions at 3 to 5 Vpp. Subject to change without notice