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CHAPTER 2

Synthesis of the Single Phase Network

At the time that the method of single sideband modulation
described in Chapter 1 was conceived there were no known methods
available for the_désign of sequence asymmetric polyphase
networks. Consequently the following techniques were devised to

meet the requirements as they arose.

1) Frequency transformations.

2)  Image synthesis and transformation.
3) Insertion loss synthesis.

4) Passive R-C network design,

including optimisation techniques.

The first three methods are discussed in this chapter while

the design of passive R-C filters is dealt with separately in

Chapter 4.
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Frequency transformations have long been known as a method
of producing a new filter from an existing design. A high pass
filter can be obtained for instance from a low pass design through

the transformation:

_ -1/
QHP = wLP

In this case a coil whose reactance is jWL is transformed to

a capacitor whose reactance is 1/39(1/£). Similarly a capacitor
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C 1s transformed to be a coil of value C.

low if this can be done for normal filters it seems reasonable
to expect that other types of transformation are possible and
particularly that asymmetric about zero characteristiés can be
obtained. - Indeed this proves to be the case; a normal filter is
symmetrical about zero frequency and simply shifting thé
characteristic sideways produces an asymmetric characteristic.

The transformation required is
Q° = Q + A eees (1)

where Q is the frequency scale of the original filter
Q” is the frequency scale of the new asymmetric filter

A is the frequency shift

If there was a coil L in the original filter its reactance
would have been jQL and it would transfofm to j(Q’*A)L = Q7L
-jAL. Since A is fixed the coil transforms to a coil of the
same value in series with a constant reactance. Similarly a
capacitor C transforms to a capécitor of the same value 1in

parallel with a constant admittance of —jAC.

The fact that such a transformation produces unrealizeable
elements is not unexpected since there is no physically detectable
difference between positive and negative frequencies, and s6 the
characteristic produced is meaningless in a physical single phase
network. None-the-less the values of the "constant feactances"

will be required when the complete polyphase network is designed.
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Figure 2.1.1  Frequency Transformation.
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Figure 2.1.2 Element Transformations (equivalent

to Fig 2.1.1 above)
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There are many other more sophisticated frequency transforms

that can be devised to meet particular requirements.

Consider for example

_ (W+a)b
—W ceons (2)

Q

This can be used to transform a symmetrical filter to one

with arbitary cut off frequencies Q. and 92 as shown in Fig.

1
2.1.1. In addition it is arranged to shift the point W = WS to
infinity on the Q scale so that in the example shown all the
peaks in both upper and lower stopbands of the original are

shifted into the lower stopband of the new filter. 1In this case

a and b are easily found by solving

- _ (-1+a)b
for W= 1 Ql mh—""i——T‘
s
eenee (3)
B _ (1+a)b
for W = +1 Qz —-—T:ﬁ-“‘
s
from which
.- WS(91+92) + (Ql—ﬂz) @
WS(QZ—Ql) - (91+Q2)
Q. (1+W) V _
wa bl e ®
-a

so that (substituting in (4))

i w[(szlmz)—ws (@,-2, )] - [ws (@) +2,)+(2,-9, )}

{ 2 (0-W) seeee (6)
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As an example and to test the validity of the last trans-—
formation a third order filter was transformed such that

2, =0.25 and 2, = 3.4, The original filter had the following

specification:
Cut off frequency W =1.00
Passband ripple ap = 0,20 db
Stopband attenuation ag = 33.6 db
Stopband edge W, = 2.50

Using (4) and (5)

1.4142012

[\
fl

o
]

-2.1125000

Hence in (6)

T 2,1125 (W+1.4142012)

Q = 7.5 — W
or,
4 - 2.50=2,98750
9+ 2.11250
W= 2.5 1

"~ 0.12093730 + 0.25547997

The elements in the original filter are therefore transformed

as follows:

A coil:

1
j .1209373@ + j 0.25547997
L L

WL > j2.5L +
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A capacitor:

1 1
w= > j2.5C * 1
JWe -
j .12093732 + ] &§é47997
C C

These transformations are illustrated in Fig. 2.1.3.

el $ 00 0 e 0--—-{.— : ’—l__:’.
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oy W, .k{ ] e e . S T &

o= hr = 12.5C Mhos
XA 32 .5L Ohms YB j2.5C Mhos
3 554 10.25548
Y = J.Q.’.E:?..’.L?’.Q. }f[hog X , = JS.—-.?-.Z‘-&.E)_ OhIﬂS
A L B C
. 0.1209373 . _0.1209373
Cy = o - Farads L, = C H

Lo Fig. 2.1.3 TImpedance Transforms

The oricinal network, and the transformed network are shown
& bl

in Fig. 2.1.4.

The transformed network was evaluated using a nodal analysis

programme and the frequency response is shown in Fig. 2.1.5.

PR —
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to an asymmetric band pass filter.,

b
3
o~

.85
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Yo =it 6745
Yo ~30.38633
Yo 30.24673
Ye 32.96005
)‘,g: -3J0 0)*63"""5

-¢ =0.%5900
N, ~0.56876
Ny ~2.11270
-25.319%
-5.64350
-0.98623

Transformation of an elliptic low pass
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Image design methods are very important, not only because
enable rapid design but because they give a good insight

the types of structure possible with insertion loss design.
Two basic methods were considered:-

1) Direct synthesis of image sections from prescribed

loss and image impedance functions.

2) By transformation from known image filter secfions.
Simultaneous transformation of the image impedance
and frequency respounse allows the generation of a
wide variety of sections.

2.2.1 Direct Image Synthesis
The lattice network forms the starting point and

from this the equivalent ladder networks can be deduced

using Bartletts' Bisection Theorem.

Fig. 2.2.1 shows the standard image filter relation-
ships. Since the lattice arms are normally purely reactive
it can be deduced that when they are of the same polarity a
stopband exists and the image impedance is reactive,
Similarly when they are of opposite polarity a passband
exists and the image impedance is real. Vhen the reactances

of the two arms are equal then

z/, ’
q = Yz, _ 1 and 8, = infinite

ie. a point of infinite attenuation exists.
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Image Impedance Zo = ZlZ2

Image Loss G. = A +3jB_ = Log [l+qi}Nepers :
o o] o e_t_'a-' f
-where q = Eﬂ“
’ 22
In the stopband q is real A = 2Tanh'1(q) Np.
In the passband q imaginary B = 2Tan”l(-jq)
Rad.

Synthesis
Zl = q.Zo
2, = Zo/q
Passband _ Stopband !
Zo real imaginary
q imaginary . real

Figure 2.2.1 Image Filter Relationships.
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Using these considerations it is possible to synthe-
sise sections with any desired complexity of stocpbands and
passbands. Figure 2.2.2 illustrates the very simplest filter
with a passband from - ¢ to zero and stopband from zero
frequency to ®. A peak can be placed aznywhere in the stop-
band, If the sign of the constant reactance X2 is reversed
the frequency response rotates about the zero frequency axis

to reverse the positions of passband and stopband.

The image impedance of this section is not very
practical being zero at infinite frequency and infinite at
zero frequency and therefore difficult to terminate. It is,
however, possible to synthesise more sophisticated image
sections exercising independent control over the impedance
and transfer functions (sometimes at the expense of network

complexity) according to the following method.

Suppose that a filter is required with a passband
from zero to some poéitive frequency w_. Let the stopband
be from minus infinity to zero and from w, to plus infinity
with an attenuation peak in the upper (positive) stopband.
Let the image admittance be zero at both cut-offs and one ohm
maximum in the passﬁand. These requirements, shown in Fig.

2.2.3, could be satisfied by the following relations:

o, =z, = /‘r—y—"

YO = [2 Y (&J+"':,§>] + 1 2
/ Zq Y2 m(mm - w+)
q o= m——— = —-,—.. = Y m - - - -
Zz '11 (&u (4+)w°c
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Figure 2.2.3 Image Filter Specification and

resultant Lattice arm Admittances.
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The expression for sz can be any rational function
of w as can that for q2. The expressions given are the
simplest that satisfy the pole and zero requirements of the
specification. The factor q must be arranged to be zero or
infinity at the cut-off frequencies and unity at points

where infinite attenuation is required since image loss

8, ='loge (1 + q)Nepers
1 -gq

Having defined Y, and q the lattice admittances can

be determined:

Y1 = Yo/q = 23(

Y = qYO =

) e
e

Then by one of the standard methods the expressions

8'8

for Y (or Z) can be broken into factors giving the individual
circuit elements. In this case Y, is a capacitor in parallel
with a constant reactance Yi and Y2 is a capacitor CZ'
The resultant lattice and its equivalent ladder (derived

by Bartletts' Bisection Theorem) are depicted in Fig. 2.2.4.
p

Using the foregoing method a variety of image sections

can be synthesised giving flexibility in design.

e e s o o 2t et e

Because so many types of conventional image filter
sections already exist it is useful to be able to transform
them to asymmetric about zero sections. This is particularly

true where for example, the final filter structure is
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required to be of a particular form for some practical
reason and by choosing known conventional sections as the

starting point this can be achieved.

Although the methods described in section 2.1 apply
there is the further possibility with image filters of

making a simultaneous image impedance transformation.

In Fig. 2.2.5 the transformation is shown of an
asymmetric bandpass filter in w to an asymmetric about zero

filter in Q through the simple transform
w — Q

However, applying this to the elements of the
original filter section would result in irrational impedances
in Q. For example a coil whose reactance was jwL would
become a reactance jYQL. This can be avoided by premultiplyin
all reactances by w (alternatively 1/;) thus ensuring that
they are functions in wz and hence in § after transformation.
The image impedance is also modified by the same factors and
so the criteria for choosing the termiuating resistors must
be changed accordingly. Further transformations are still
possible using the methods of section 2.1 to move or stretch
the frequency scale to get the desired final effect, A case
o£ interest for single sideband modulation where this can be
applied with advantage is wﬁen the passband is required to
extend from zero to w = +1. Setting the lower cut-off to
zero results, in some cases, in a reduction in the numher of

elements required. In fig. 2.2.5 where the original filter
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Transformation of Existing Image Sections

to Asymmetric about Zero Sections
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had cut-off frequencies at w = B and w = 1/% the trans-

formation required is a frequency scaling to make the pass-
1
band 1 radian wide ie. to make 8" - 2 =1 and a linear shift

B

of _2 to place the lower cut-off at zero ie.

vy

with a corresponding transformation of element values and

image impedances.

Insertion Loss Design

The constraints of conventional network synthesis require

that the modulus square of the transfer function being symmetrical

about zero frequency, must be the ratio of two polynomials in

even powers of w., For assymmetric-about-zero functions, however,

odd powers of w must exist in the expression for the modulus.

In consequence, the actual transfer function must contain some

imaginary terms in even powers of w and real terms in odd powers

of w.

Mathematically H(p),.the transfer function, can be

expressed as

(A_+3B_)p

ceeee (1)

(S
€

where p =

(Cr+JDr)p

M

2.3.1 Double Zgggiggggg_égggzéess Netwggg_gonsideratigg§

e e e e s i e s o et o s e s e s G e - -

Consider a loss—less two port network. If one port is

terminated in a one ohm resistor then the impedance seen

looking into the other port is the driving point impedance

ZD.
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Let Zy = _1 1 : R
M, +
112 n,
where
- - - r 2r+1
M, and M, are of the form £Z4tA p + JBrp } ie. real

Now Z, = by + 294 ceee. (D)
7o+ 1

where Z and Z and AZ are defined by the impedance

11 22
matrix
\ Z Z I
l = 11 12 1 : *e v e (4)
\ 231 %22 I
=)
A, being Z Z - 22
z PEMNE f11 “22 12
Vl’ Il being the conditions at port 1
V2 and 12 being the conditions at port 2

This is illustrated in Fig. 2.3.1.

— —
118 Y- VAR IA
° o | Lo | )
I
Fig. 2.3.1 2 Port Reiations‘nips

Z., may also be written as

D
L
1 + Y22 5
ZD—le -l‘-:""'z—-—- “e e e (D

™
3
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.f?‘
T3

7 .
where Y = "11/A ceees (6
22 °Z 6
Since the elements defining the matrix must be purely
reactive to make the network lossless there are two cases

to consider.

Case A
’.n -
1+ Yl M ﬁl' vl
z =z 22 . Lt 7
D711 1+ 2, n, M, T Y
2 2 41
| "2 -
. _M
1e. Z11 n_1
2 n
Hence AZ =1 and
_M n
222 —-E_Z_ 2
2 Ziy o /MMy = nymy e (B
Y = M1 "2
22 .
1
Case B
1 My
1 +Y n . + 1
Z. =12 22 = 1 1 ceees (9
D 11 :
1+ Z M n
22 2 2
m vt
| 2
ie. 2 =n1
11 —
M
2 M
Hence AZ = _i and
7 - 1'12 MZ
22 N
9 = YR
2 Zyp = my oy M cere. (10)
n
Y, =1 2
22 i
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P
e

licte that if the network 1s reversed

= " I 1 A
ZZD N2 1 (Case A) cee.. (1)
LI + n
1
and if }1 =2 9 Z1D = ZZD therefore Symmetrical network
. _ _ 1/@ . et s
or if n1 n, ZlD Zop therefore Antimetrical network
or
M. + n ,
Z.’ZD = 1 ) {Case B) veees (12)
M+
-12 nl

and if M, = M Z 1/%2D therefore Antimetrical network

Z,

or 1f n, =n Z 2D

theref Symmetrica T
1 9 1D refore Symmetrical networ

Consider again Fig. 2.3.1. The transfer ration Eg

. . IO
is given by
E Z
N -
_1_2_ - Tz )1%1_2 5 - /M) My -y om, ceee. (13)
AN
0 D 22 Ml+M2+nl+n2
therefore
12 . .
Bl o= B2 x |2
IO IO IO
! M. - 1, - (- N
- /MM ey N i S
! M -~ -,
M, + M2 + nl + n2_ Ml + 12 n1 o,
M. M n, n
= 1 22 1 2 - ceeen (18)
(M, + M,)" ~ (o) + ) '
i 2
= 1 1 - 1 - ZQ eee.. (15)
1+ 2

therefore T(p) . 1 - IR(p)’ 2 cee.. (16)
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v
fWal

where T(p) = 2 Ez(p)

..... (17)
Io(p)
R(p) =1 = Z (p) ceee. (18)
1+ ZD(p)'
where H(p) = Io(p) (M1 + Mz) + (nl + nz) veee. 2O)
2E, (p) B M
K(p) = (4 - M) + (a; = n,) ceee. (21)
i | '
MY being 404, M, - 1, n,) ceees (22)

Note that in the foregoing analysis it was necessary
to avoid the usual assumption that lH(p)t2 = H(p) . H(-p).
This is only true for the case where H(p) is symmetrical
on the p = jw axis. In the assymetric - about—zero case

lH(m)' # lH(—m)' by definition.

Given a suitable transfer function, in the form of
H(p) or T(p) it is now possible to deduce a corresponding
K(p) or R(p) and from that the expression for the driving

point impedance Z After that it is a matter of logical

D’

decomposition of ZD to synthesise the network.
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2.3.2 Synthesis of Equiripple Passband Arbitary Stopband
Functions

The method used here has been adapted from work by
Orchard, Bingham and oéhers (refs. E1-E3) to allow the
synthesis of functions of the form shown in Fig. 2.3.2a.
The filter has an equiripple passband from W to wy and

a stopband of arbitary specification at all other frequencies.
By making the frequency transformation
7t = —1U ceeen (23)

the passband becomes imaginary in Z while the whole stopband
transforms into the whole real Z domain as in Fig. 2.3.2b.
This transformation allows the arbitary design of the stop-
band to be made using template methods as will be shown

later.

. 2 2
Let the attenuation poles occur at Z° =nm o where

g =1,2,3....r and form the polynomial

r

E+ZF = ﬂ z+m)* eeee (28)

o=1

where E and F are even polynomials in Z.

The insertion transfer function H(p) of section 2.3.1
can now be defined in such a way as to give an equiripple
passband by setting

th

1+ 2 _ 2.2 ceen. (25)

H(p) . H(p)

t [E + ZF E - ZF
= — [ —— + e——
L +3 [E—ZF+2 E+ZF]
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Fig. 2.3.2-C Equiripple nature of Equation (25) in
passband when Z is imaginary,
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Figure 2.3.2-C illustrates (25) graphically where, since Z is

E+ZF

imaginary in the passband T is of constant modulus. The

vector sum is real, oscillating between 1 and 1+t giving a pass-

band ripple of 10 1og10.(1+t)dB.

Now the stopband loss is given by A, =10 10810
|H(p)l2 dB. If this loss is sufficiently large (>10db) then

A_ may be approximated by

_ t E+ZF
A, =10 log,, [; . ETTT?ﬁF] dB. ceees (26)
g=r
= t 1 + Z/mg
or AS 10 loglo A + ot {10 loglo TT—Z'E}...- (27)

Now if Z/m, = e veee. (28)

where Z =el and m.=e' 0 then

= t Y-
A, =10 log;o 7 + 23{10 log, Coth( , o)} cees. (29)

Therefore, by plotting the stopband requirements on the

- — 1 W=wyJ
Y frequency scale where vy loge A 3 1oge (G:Ez) and ,
then using identical templates of the form 10 log10 Coth 2

displaced appropriately along the frequency axis the values
of My and hence mb can be determined. Due allowance must be

t
made for the passband ripple factor 10 1og10 4,

Factorization of the Transfer Function

Having determined the positions of the attenuation
poles on the Z frequency axis it is desirable to be able to
obtain the transfer function H(p) in factored form. It has
been shown (refs. E1-E3) that this can be done most accurately

in the Z plane.
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th ,
Now H(p).H(p) =1 + E2 _ ZZFZ eeee. (30)

(E /1 +¢t +2ZF) (E /T + ¢t - ZF)
(E + ZF) (E - ZF)

EvYlI+t + ZF
e | ceeen (31)

]

therefore H(p) =

and this can be factored using numerical methods to

2
H(p) = H(ZE Lo n) eers (32)

Consider a single quadratic factor of the numerator

Q = 22 + mZ + n. Having found this it can be transformed

back into a factor in p according to the following method.

NowQ,6= (22+mZ+n) (Zz—mZ+n)
= Z4 + (2n - mz)Z2 + n2
- 2 W=w
= (w~wu> + (2n - mz) (w-wU> + 1.'12
L L
R w2 - Sw + T
= = ceee. (33)
v~ w )2
L
where R = (1 + n)zl - m2
— _ 2
S = 2(1 + n) (mU + nmL) m (wU + wL)
_ _ 2
T = (wU + nwL) w Wy

Therefore, taking the roots of (33) which give zeros in the

left hand half of the p plane

b5 Jfur _sE
A+pB  _ | VR IR+ ) R 2
pE - R

H(p) = — ceee. (34)

M 'ﬂ' (w*wL)
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Now M

1
=
+
N
o>
~
W
(%]
~

therefore MM

i
=]
N
!
N
N
=
N
1]
E)
Q
+
N
N
N
£)
Q
!
N
N’
)

And finally from (34) and (36)

T2
.S 4T S
ilfr B [” "R 4y v//::ij—;;-]‘ (37)
H(p) i * e 0

o=1

w(mbz - 1)+ (mU - wL)

, |
From (17) k@) = Jae)|* -1
_ tE?

E2 - ZZF2

/t E ./t E

E + ZF E - ZF

p

thus K(p) = E—{—% ceen. (38)

Now E is an even polynomial in Z and therefore of the form

EE:CO Z20 and can be transformed to a polynomial in juw

2 _ %
through the substitution Z~ = .

W wL

The denominator E + ZF can be transformed as described

for H(p)

Therefore:

w—w o
£ ( [I)
o w—mL

!__!r (moz } Z::U) .....

L

K(p) =
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A computer programme was written to design filters
automatically and accurately. The quadratic factors of H{p)
were generated approximately and then improved first using

Lins' method and secondly Bairstow's method.

However, to test not only the computer programme
but also to check for flaws in the theory, a simple filter
was designed by hand so that all the intermediate results

were available.

Specification

Passband:

Upper cut off Oy = 1.0

Lower cut off W = 0.0

Attenuation ripple = 0.1 dB
Stopband:

Peak at w = - 0.25°

Peak at w = =

Passband ripple = 0.1 = 10 1og10 1+ t)

therefore t = 0.0233
g=2 2
Now E + ZF = TW' (Z + my) (from (24))
o=1
=0y
o = (from (23))
a w —wI
_ /-0.25 - 1.00  _
there fore m = // 555 =000 = 2.236068
L - 1.00,

2 , _ 0.00,
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therefore E + ZF = (Z + 2.236068)2. (Z + 1)2

2% + 14.9442719 72 + 5

therefore E

6.47213596 22 + 14.47213596

o]
"

Now V1 + t

1.0115829

therefore to evaluate H(p) using (31) EV1i+t +ZF =

1.0115829 z* + 15.11737018 z% + 5.05791459
+ 6.47213596 75 + 14.47213596 Z

= Y1+t [24 + a 23 + a Z2 + a. zZ + ao]

3 2 1
where ay = 6.398028125
a, = 14.944271900
a; = 14.306425800
a = 5.00

In this simple case the quadratic factors of the
quartic were evaluated from the explicit quartic solution

which states that the quadratic factors are given by:

2 1
,  [a __(a3 ;] [ul _A(ulz )]
2or il "\ thT )l L N

- where U, is the real root of the cubic

1

U3 - a U2 + (a

2 -
2 - 4aoaz) =0

2
123 T 48U - (a7 + a g

which may be solved by Cardan's method. As a result

ﬁl = 6.85570227 and the two quadratic factors are

2% + 4.673330805 Z + 6.058967702

and  Z2 + 1.7246873205 Z + 0.825223082

The quadratic factors in Z can now be transformed

to factors in p.
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lst factor ' 2nd factor

m 4.673330805 1.7246973205
n 6.058967702 0.825223082

R 27.898004205 0.356858450

S - 7.722085409 0.675865317

T 1.0 1.0

« 0.137948551 - 0.946965545

B 0.129222724 1.380394063

The factors in p are given by
ptia + 8B
The numerator of H(p) therefore becomes
YRR, (p + jB; +@)) (p + jB, + a,) x 1.0115829

= 3.1970041156 p> - j2.586430644 p + 0.987908831
+ 4.826243710 p + j0O.217568598

T tm ottt

The denominator of H(p) is from (37):

ﬂ [w(mgz - 1)+ Gy - wL)]

= (bw +1) = M
/iE myoTmy toy T,
Now R(p) = gz = M

and the numerator bécomes

/tE

4
0.1526432559 [?' + 14.9442719 22 + 5]

2

0.1526432559 [(w—l)z + 14.94427190 (w-1) + S(uz]/w
And therefore

mo-om, * n, Tn, = -3.197001855 p2 + 32.58642883p

+ 0.1526432559

Since m, - m, + n. - n, is real then n, =n from (2).

1 1 2 1

>
&
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Synthesis of the Network

From the evaluation of H(p) and K(p) we have

3.1970041156p> - §2.586430644p + 0.987908831

m oy -
mo-m, = —3.197001855p2 + j2.58642883p + 0.1526432559
2n1 = 4.82625108p + j0.217568594 = 2n2
therefore ZD‘= m1 + n1
my *

= 4.82625108p + 1.14055209 + i0.2175685984
6.39400597p° + 4.82625108p - j5.17285947p

+ 0.835265575 + j0.2175685984

This represents the input impedance of the network
when terminated by a resistor at its far end. 1In order to
break the network into its component parts some assumptions

must be made about its structure. Examining ZD it can be

seen that as p > =

Z, ~ 1/(1.32483906p)

which means that there must be a shunt capacitor of value

1.32483906 at the input. Removing this capacitor C, the

1

admittance left is

Y’ = 3.315203115p - j5.46110286p + .835265575 + j.2175685984
D 4.82625108p + 1.14055209 + j0.2175685984

Now there is a transmission zero at w = -0.25 and this
must be realized either with a series or with a shunt resona-
tor circuit. Assuming a shunt resonator which produces a

short circuit across the ladder network at w = — 0.25.

YD’ = - j0.535908705. (at w = - 0.25)
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Therefore there must be a series branch consisting

of a constant reactance Y1 = l/Y‘

preceding the shunt resonator.

b' = j1.86598468 immediately

Removing the series constant reactance YD’ reduces to

3.315203115p ~ j5.46110286p + 0.835265575 + j0.2175685984
— (p+j0.25) (5.364109339 + j6.186134096)

YD =

The denominator has been factorized so that Yﬁ' can

be split into partial fractions:
Py,

Y * =————— + R(p) and as a result
D p + Y2/C2

Y, = j0.39522695 C2 = 1.58090779

0.23865667 + j0.3476253

[
=]
[=¥
=
~
o
N
L]

/Ry + Y.

The network is therefore completed by a shunt
resonator consisting of Y2 and 02 in series, a shunt

admittance Y3 and the terminating resistor RT' The final

network is shown in Fig. 2.3.3.

Because of the way the elements were extracted the
terminating resistor éamé ouf to be 4.19011964 ohms instead
of 1 ohm. If different assumptions had been made about the
structure, the value of RT would also have been different.
Using Norton's theorem transformations are possible which

would allow the termination to be made 1%Q.

To check the final result the transducer loss was

computed using a nodal analysis programme and is plotted in
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Fig. 2.3.4. (Transducer loss being the power in the load
with the network in circuit minus the power in the load

with the network replaced by an ideal matching transformer).
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2.3.3 Elliptic Function Filters

A common requirement, particularly in single side-
band modulation, is for filters which provide an equiripple
passband and an equal minima stopband. Such filters are
sometimes called 'Elliptic' because of the use of Jacobian
elliptic functions in the sol;tion of the approximation
probiemm They are also sometimes called 'Cauer' filters
after Cauer who was one of the first to describe them (E4).
Considerable work has been done on the computation and
tabulation of such filters (E8) and these are sometimes
in a suitable form for frequency transformation using the
methods of section 2.1. However, in many cases the wanted
attenuvation characteristics in both the passband and the
stopband are not available. Aléo, the tables are usually
in the form where, to meet the realizeability criteria of
LC networks, they have already been subjected to frequency
transformations. Accordingly, if an asymmetric about
zero filter is required with special characteristics in the
transfer function, it may be extremely difficult to find
the right set of data in the tables. A particular case of

interest 1s a class of R-C passive (resistor/capacitor)

networks where the criterion is that the attenuation zeros

of the transfer function are required to be purely imaginary.

This imposes special constraints on the relationships between
the passband and stopband attenuations and the passband-
stopband frequency transition ratio. Such functions are
unlikely to be found in any published work and it therefore
becomes necessary to consider direct synthesis from the

specification.
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Consider the characteristic of Fig. 2.3.5 which has
1/. . .
a passband from w = ~/x to w = —-x with ripple a_ and a
1 b

stopband from w = + /; to + x with an attenuation of ag
minimum. Most other characteristics could be reduced to
this t- frequency transformation. It is this particular
one however, which is most interesting for applications in

single sideband modulation. The transfer function can be

expressed as
lue)[? = 1+ 2|k |2 veve. (40)

where |K(p)| is an auxilliary function which oscillates
between + € and - €over the passband and + 1/e through
infinity to - 1/ € over the stopband. Solving for H(p) and
K(p) in this form facilitates network synthesis according

to the method of section 2.3.1.

The passband and stopband attenuations are given by:

= 22
ap 10 1og10 1+ t7€¢%) dB eeoss (41)
and a_ =10 log 1+ t2 g) dB oo (42)
s 10 . e

Ihé Approximation Problem

A function F = K(p) 1is required as shown in Fig.
2.3.5 which oscillates about zero over the passband and
just touches the lines * €. Over the stopband it must

oscillate about infinity and just touch the * 1/5 lines.
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Relation between F(w) and H(w) for the

equiripple passband / equiminima stopband filter,

Figure 2.3.5
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Considering the roots of the following expressions

ez - F2 =0 _
s s 0 (43)
1- &% =0
W - x2 =0
1 - mzxz =0

sves e (44)

i
o

@

it can be seen that expressions (43) have together exactly
the same number of roots and at the same frequencies as have

the expressions (44) taken together.

The following equality may therefore be stated:

2
( g - F2) a - ng) = Cz(w2 x2) a - wzxz) <%§)

dw C dF
or VQwZ - %3 @ - x2m2)

/(2 - F%) (1 -é2rd)
= du ceve. (45)

where C is a constant and U is an intermediate variable,

Integrating between equivalent passband limits:

(=}
I

w’
dw
v/:/qmz _ x2) a - x2w2) cecas (46{

-/x
F(w’)

dF
cf/(Ez_Fz) a - &5 , (47)
- €
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Integrating (46) and (47)

U = dn—'1 [;w x, VY1 - xé] ceens (48)

c{1<1+sn"1[§-%°—’-)-,3]} | eee. (49)

where dn(x,y) and sn(x,y) are two of the doubly periodic

Jacobian Elliptic Functions. K1 is the complete elliptic

integral of the first kind, modulus 52.

A - i ] (50)v

-

Rearranging (48):
1
w=-;dn U1,
which is effectively a translation formula between the
w or p plane and a new 'U' frequency plane. Considering
(50) and using the standard relationships for elliptic
functions the following table can be drawn relating'U and

[V

u w
0 - 1/x
K .
/2 -1 Passband
K - X
K+jK~ o Transition
K+2jK” + x )
K s1ra
/2+23jK +1 Stopband
+2jK” + 1/x !
. Transition
*IK ® { through
0 _ llx infinity




Ph.D. Thesis “The Synthesis and Application of Polyphase Filters with Sequence Asymmetric Properties”
Michael John Gingell 1975 University of London Faculty of Engineering,

€3

Going from top to bottom the table covers the whole
real frequency axis while traversing a rectangle in the U

plane.

Note that K is the complete elliptic integral of

modulus m = Y1 - x4 whereas K’ is the complete elliptic

integral of modulus m, = V1 - m2 = x2.

1

Considering now (49) this can be written as

F(w) = e.sn v - K g

5 L ceven (51)

The constant C allows one degree of freedom in
deciding the order of the function F(w). C must therefore
be arranged so that as U passes from O to K then %-* K1

passes through an appropriate number of multiples of K

1.
K \ 0 B
1e. (E' K]-} (E Kl)— 2n Kl
C = K and therefore
or 5 Ki n
T —
F) = e.sn |ZRU-KK -2 ceeee (52)
K

Figure 2.3.6 shows how the function F(w) oscillates

over the passband for the example of Figure 2.3.5.

It can also be observed that the zeros of F{w) occur

.o f2c =1
L‘Z - < 21-1_—> K N

Also the maxima occur at

at:

1,2..n veeee (53)

U =£—K r=1,2..n ceee. (54)



oh

Figure 2.3.6 Showing the oscillation of F(w) over
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the passband and the relation between

U and w.
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The _Transfer Function

Now from (40) and (52)

@) |? = 1 + %]k |?
=1+ t2 52 snz[(zn E—K) Kl’ 52] eeses (55)
but ]H(p)l2 = H(p) . H(p)

therefore H(p)

s 2n U-K 2
1 - jtesn [(—————K )Kl, e] eesss (56)

The zeros of H(p) occur therefore when

2n U-K 2 j
sn [(——r-l—-—ﬁ—-—-)Kl, e] = J/te

Let U = jv + X/2, ceeee (57)

'jv.zn.x1 2]

then sn | ———— , €

K
V.2n.K
or sc ——-——1-, /1 - é] = 1/te

K

0 2nK1

or at V. = — sc»1 [llts, /1 - 84] : eeese (58)

Since sc is periodic roots also occur at V = Vo + j§-§-
_ . _ [ 1+2s '
and therefore at U = iv, ( 7 ) K ceees (59)

where S =0,1,2 ....n

The zeros of H(p) in the p plane are therefore

at

g
]
i
W

dn [jVO - (121218 )K , nfl—x] cesss (60)

where K is the complete elliptic integral modulus v/l-xl"

and v is defined by (58).
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The poles of H(p) in the p plane are at the same frequencies

as those of K(p) and hence F(w) and are therefore at

wp = +% dn [<2§;1) K, v’l-xa] eoves (61)

The complete transfer function is
n

. (0= w,)
Hp) = M, . =L Zs

ceses (62)
(w - w, )

[a]

r=1

where WZg is given by (60) and may be complex since

d.c1 d1 - jkz.s;c.si
dn(x+jy, k) = 5 RV v eeese (63)
¢, + k“.8%.s
1 1
where
¢ = en(x,k)
s = sn(x,k) = /1-c2
d = dn(x,k) = 1—k2s2
) cesss (64)
e = cen(y, fl—kz)
§; = sn(y, v‘l—kz) = !f‘l---cl2
d; = dn(y, Vl—kz) = Vl-(l-kz)s%

and in this case

= [ 128
x= ( 2n ) K

y V0 where V0 is given by (58)

k = /1-x*

fl—kz = x2
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A Special Case

The case where the zeros of H(p) lie only on the
imaginary frequency axis is of special interest and for this

to be true then in (63) dc":1 d 0.

1 =
Now since the function dn cannot be zero for real

arguments it follows that ¢, = cn (Vo, xz) =0

1
therefore VO = K” the complete elliptic integral

modulus x2. esess (65)

However, from (58)

K -1 |1 4
Vo—m—— sc [/ts, ls:l

1
so that
2nK.K” /aare
1/t€ = sc [——K—l— . 1-54] ceees (66)

Since K,K” and K, are all defined by either € or x then (66)

1
imposes a fixed relation between g X,t and n (the order

of the function).

This can be reduced by considering the original

proposal, illustrated in Fig. 2.3.5 that F(w) = 1/F(--m).

Now F(w) = €sn [—Q—-HE:E)—KI ’ 82] and w = - dn [U, ll—xa]

K
therefore w = + —:;— dn [U + 2j K7, Jl—xl‘ ]

so that a shift in U of 2jK”° negates w.

W=

. , 2nU-K . K°K 2
theréfore F(-w) =€ sn [—(—iK——)— K1 + 4] % Ln , e]

_1 (2nU-K) 2
=< ns [————-—K K1 N e]

X))
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4K'K1n _
= K1 ceeee (67)

2nK.K” 7/ :
which is true if t = 1 when in (66) 1/ts = s¢ [~——l¥- 1- 4 ]

- K
K
=sc[—1—-,¢1-ea]=1/5

This is true if

2

Fixing t = 1 reduces the relationship between ¢ x and n to

(from 67)

m X o= Bk

Now the elliptic nome 'q' is defined by

='e—fK /K and therefore

q = e—nKl /Kl = e-&nHK‘/K = qlm ceoes (68)

For a given K of modulus k the value of q can be obtained

from the series given by Grossman (E7)

5 9 3.,

q =E + 2E° + 15E° + 150E-

where 2E = %—E—é%: » k7 =/1- K2

LI LAY W) (69)

In this case if we wish to evaluate the value of x for a
given €and n then q) must be evaluated first and in this

case k = ez.

1/4n
1

and the inverse approximation of (69) can then be used which

Then q can be computed from (68) ie. q = q

is

2 6 2
- 1+q  +q + ...
k-—li/]- [1+2q+2q4+‘.‘] ee v e (70)

and then v’l—x4 = k so that x can be found.
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In figure 2.3.7 the attenuation available
over a given bandwidth is plotted fromn = 1 to n = 18,
It can be observed that for a given order of function
there is a minimum attenuation that can be achieved.
Similar curves for quadrature modulation networks
have been given by Saraga (C8), Weaver (C8) and

Bedrosian (Cl10).

In this case VO = K’ so that (60) reduces to

R

2n

cs (1+25> K, Vl—x4 veee. (71)

and the expression (61) for the poles remains unchanged at

w_ = +;1,— dn <Z}:—1—> Kl s »’]:-x4

2n

th - dn (25“1) K, 1—x4q )
n
r=1 veees (72)

This function has been tabulated using a computer
programme is given in Appendix I forn =2 ton =9 and
for stopband attenuations from 35 dB to 70 dB in steps of

5 dB.

In this special case since t = 1 the passband ripple

a_ is related to the stopband attenuation ag by (from (41)

and (42))
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therefore

therefore ap = 10 loglo [

The table below shows the variation of a

and it can be seen that for even moderate values of ag

E..

it

71

10 log10 (1 + 52) dB

-1

_1)

10 10g10 (1 + 1/€2) dB

a /10 3
1+ (10 ° - 1) 1]

band ripple is extremely low.

It can

a factor of

against

eeees (73)
ceen. (78)
a

S
the pass-—

also be observed that ap decreases by approximately

10 for every 10 db increase in a, which can be

expressed as a

dB.

Stopband To

58

a_ dr a db
§ P

10 0.4576
15 0.1396
20 0.0437
25 0.0138
30 0.0044
35 0.0014
40 0.0004
45 0.00014
50 0.00004
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Equivalence Between the Special Case and Known Synthesis

Techniques for Phase Splitting Networks

It should be noted that the special case described from p.67-71
gives rise to exactly the same final expression {(71) for the
zeros of H(p) as is given for the poles and zeros of 90 degree
phase splitting networks by a number of authors (reference C6,
C8 and C10). The tables given in Appendix I are therefore
dual purpose and may be used for designing 90 degree phase
splitting networks by considering only the tabulated zeros,

ignoring the poles, and forming two functions:

(p+ju.)
H = ST T = 1 3 I Y
@) (p-jw_) r >335
r
(p+jwr)
and hz(p) _(-[-)——T(l—)—;—)- r = 2,4,6 . .

The resultant phase splitting networks will be such that
when used in a quadrature modulation system the minimum theoreti-
cal sideband discrimination achieved will be the attenuation

figure given.
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2.4 Summary of Synthesis Methods

A wide range of methods exist for designing filters with
frequency responses that are asymmetric about zero frequency.
Designs may be achieved either from first principles or through
the transformation of existing tabulated symmetrical about zero
filters. Either transfer function or a complete filter structure

can be produced with any of the methods described.

Image filter designs have been studied because of their

usefulness in coming to an understanding of the many possible

network structures. Further advantages existing in their practical

application will be discussed in the next chapter.

Two different direct function synthesis techniques have
been studied. The first method is generally applicable to any
band pass filter with arbitary stopband requirements. The second
method involving elliptic functions has a special case, the
solution of which is identical to that of the known problem of
designing a 90 degree phase splitting network for single sideband

modulation.



